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Abstract—Cloud-based infrastructures have grown in pop-
ularity over the last decade leveraging virtualisation, server,
storage, compute power and network components to develop
flexible applications. The requirements for instantaneous de-
ployment and reduced costs have led the shift from virtual
machine deployment to containerisation, increasing the overall
flexibility of applications and increasing performances. However,
containers require a fully fleshed operating system to execute,
increasing the attack surface of an application. Unikernels, on
the other hand, provide a lightweight memory footprint, ease
of application packaging and reduced start-up times. Moreover,
Unikernels reduce the attack surface due to the self-contained
environment only enabling low-level features. In this work, we
provide an exhaustive description of the unikernel ecosystem;
we demonstrate unikernel vulnerabilities and further discuss the
security implications of Unikernel-enabled environments through
different use-cases.

Index Terms—Unikernel, Docker, Container, Security

I. INTRODUCTION

Cloud computing is comprised of various virtualisation
architectural models enabling users to build heterogeneous
services comprised of multiple resources such as network de-
vices, software components, serverless components, and con-
tainers. However, a new paradigm focusing on transient micro-
services based on Unikernels has emerged and is becoming
progressively popular. Unikernel’s on-demand properties, low
running costs and elasticity make it a perfect candidate for
transient services. With the rise of multi-tenancy, multi-cloud
infrastructure and the heterogeneity of the services proposed,
the complexity of the ecosystem is constantly increasing,
leading to a tremendous attack surface to cover and protect. In
addition, the supply chain is often composted of various third
party libraries, Operating Systems (OS) and re-implemented
operating system functions or legacy code enabled, to ensure
retro-compatibility between systems. Existing work on Uniker-
nels focuses mainly on its applications across a broad range of
technologies, as well as, its integration with the host platform.
However, while Unikernels claim a reduced attack surface, to
the best knowledge of the authors, the security of Unikernels
and their attack surface has not yet been explored in depth.
In this manuscript, we review and explore Unikernel security
ecosystems as the rise of transient microservices will make
Unikernels prevalent in cloud infrastructure. The remainder of
this manuscript is structured as follows;

II. VIRTUALISATION, CONTAINERS AND UNIKERNELS

A. Virtualisation

Virtualisation is the process of emulating a system, or
multiple systems, using the resources of a host machine [1].
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This can be used to re-create networks, or completely isolated
machines, increasing the versatility of hardware. Virtualisation
improves security through isolation as individual virtual ma-
chines cannot communicate with each other without explicitly
specifying a connection. This isolation means that if the virtual
machine administrator account is compromised, the attacker
will not be able to access the host or other virtual machines
running on it. This is facilitated by an additional level of user-
privilege on the host that controls the guest [2].

1) Virtualisation Types: There are a variety of virtualisation
types, each with their own advantages and disadvantages.

a) Full Virtualisation: This type of virtualisation virtu-
alises the hardware the guest machines runs on. This can either
be hardware-assisted, with the hardware itself supporting the
virtualisation or software-assisted, where the operating system
interfaces with the hardware [3]. The former type of virtualisa-
tion’s main appeal is its ability to emulate hardware, allowing
for consistent performance, improved reliability, and isolation.
If an attacker gained control over the machine he would have
no knowledge of the real hardware of running on the host.
While the malicious user might not be able to interact with
the host environment, he might, however, be able to discover
that he is interacting with a virtualised environment [4]. This,
in turn, will allow the attacker to fine-tune his attacks to target
the virtual machine itself, reducing its security.

b) Para-Virtualisation: Though largely antiquated (hav-
ing support removed from the Linux kernel in 2009 [5]), this
type of virtualisation ensures that the virtual machine interacts
with a software interface instead of the hardware directly. This
allows the virtual machine to use Application Programming
Interfaces (APIs) to make system calls that would otherwise
be hard to virtualise. This improves the overall efficiency since,
the most complex system calls are abstracted through the
API [6]. However, with the improving efficiency of hardware
virtualisation, para-virtualisation no longer provides tangible
performance benefits [5].

c) OS-Virtualisation: OS-Virtualisation is where a single
kernel can run multiple occurrences of the operating system
as containers, each of which acting as an isolated machine.
These containers place less emphasis on recreating an entire
machine, but rather focus on the user space, allowing users
to run multiple operating systems and associated software
on a single machine for convenience. The containers do not
have access to the hardware of the physical machine, and will
typically use the same OS as the host, which in turn can limit
the application of the machine [7]. This also implies that if
the kernel is ever compromised, all associated containers will
be compromised [8].
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Fig. 1: Virtualisation Types

B. Docker

Docker is software enabling OS-Virtualisation through the
use of the ‘docker engine’ which manages the containers on
the host. Docker, like most OS-Virtualisation, opts for process-
level isolation over full isolation. Whilst this makes it more
efficient for running isolated applications, Docker systems
demonstrate numerous vulnerabilities, as highlighted in [9].

C. Unikernel

1) Unikernel Types: There are two major kinds of Uniker-
nels, whose security profiles differ slightly: Clean Slate and
Legacy [10].

a) Clean Slate: Clean slate Unikernels do not try to
emulate classical OS in any regards. They are written in a sin-
gle programming language and provide interfaces for external
communications (i.e. networking) in the same language. Ex-
amples include MirageOS (OCaml), IncludeOS (C++), HalVM
(Haskell), LING (Erlang) and runtime.js (JavaScript). Clean
slate Unikernels allow language specific virtual machines,
like the Java Virtual Machine (JVM), to function as actual
virtual machines. C libraries, while present, are transparent to
userspace code. The most straightforward implementation can
be found in runtime.js, which wraps Chromium’s V8 Javascript
engine inside a lightweight kernel [11].

b) Legacy: Legacy Unikernels, on the other hand, im-
plement a subset of POSIX to ensure unmodified software
to run, while some only require minor configuration changes.
They don’t support timesharing (the ability to simultaneously
run multiple independent programs), instead, they delegate this
role to the virtualisation layer. Unikernels such as OSv and
Graphene focus on ensuring Linux compatibility and software

interoperability, re-implementing system call interfaces, while
the Rumprun unikernel implements a subset of FreeBSD’s
syscalls [12] [13].

Figure 1 summarises the primary differences between the
different types of virtualisation including unikernels. Figure 1
(top-left) shows the layout of software assisted virtualisation,
and OS-virtualisation. The virtualisation is run on top of
the OS by a hypervisor, which can allow for the creation
of virtual hardware. Figure 1 (top-right) shows hardware-
assisted virtualisation, and para-virtualisation. The hardware
itself (sometimes assisted by the hypervisor) runs the virtual
machines itself, while Figure 1 (bottom-left) demonstrates how
containers are implemented and finally Figure 1 (bottom-right)
provides a overview of Unikernels virtualisation architecture.
As demonstrated, Unikernels do not require an operating
system to function correctly.

2) Isolation: Software running on a Unikernel is less
isolated from the hypervisor than software running on a
virtual machine, but more isolated than software running in a
container. While Unikernels rely on the hypervisor for their
isolation, they also bring their own kernel with a reduced
attack surface. This bespoke kernel makes Unikernels more
isolated than containers. However, similar to any software, it
is up to the Unikernel developers to supply Unikernels with
intrinsic security.

D. Ecosystem

Figure 2 shows how the development and production en-
vironments differ, along with the Unikernel’s distribution. In
development, an OS would be required in setting up the
Unikernel and its features, while in production it is optimal
to deploy the Unikernel without a host OS for increased
optimisation and security. This can be managed through an
online repository to host and modify the Unikernel image.
Moreover, the environment/functionalities vary depending on
the Unikernel’s distribution, which has been generalised in
the example above. Features include a package manager (e.g.
Conan) for building and downloading Unikernel compatible
applications, a toolstack/domain manager (e.g. Cosmos) to
manage unprivileged domains, and an API (e.g. Rest) to
manage Unikernels remotely through issuing commands.

E. Unikernel Usage

Unikernels are primarily used in cloud computing, however,
they also show potential in Internet of Things (IoT) and
networking devices. These platforms benefit from Uniker-
nels flexible, lightweight and scalable framework. For cloud
computing and networking devices, Unikernels prove more
effective at utilising the available hardware, allowing for
increased scalability in a more isolated, heterogeneous com-
puting environment with a more optimised code base. Due to
their efficiency, Unikernels also come with the benefit of much
faster boot times, allowing for downed services or network
nodes to be quickly restored with minimal overhead. The
most compelling reason to use Unikernels is their potential for
security which takes advantage of their reduced attack surface,
isolation and, depending on the distribution, a robust set of
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Fig. 2: Unikernel Ecosystem

security features [14]. IoT devices also largely benefit from
Unikernels lightweight code-base and scalability, allowing for
a more complex and diverse set of services to be deployed
on-demand with very low overhead, despite the hardware
limitations.

III. UNIKERNELS SECURITY OVERVIEW

By limiting the code base of deployed applications, Uniker-
nels inherently have a small and unique attack surface making
them relatively secure. This is further achieved in some im-
plementations by evaluating and modifying the implemented
code [15], where developers are able to focus on hardening
security to effectively mitigate existing attack vectors.

1) Shell: Numerous Unikernels do not implement a shell
natively, making most types of payloads, that typically rely
on bash, ineffective. Further preventing automated attacks
or less experienced attackers from successfully exploiting a
vulnerability by increasing the complexity of the payloads.

2) System Calls: System calls are often removed, or are not
supported by Unikernels, hence, malicious users are required
to know the exact memory layout in order to invoke a function
call such as open() or write(). The attack surface is

further reduced through implementing randomised memory
layouts at every build [15].

3) Hardware Emulation: By not emulating hardware inter-
faces such as floppy drives, Peripheral Component Intercon-
nect (PCI) bus or Graphics Processing Unit (GPU), possible
breakouts such as the 2015 Venom attack that affected QEMU
can be prevented [16]. Unikernels such as IncludeOS and
Mirage-OS are also able to mitigate this through running
on solo5; a sandboxing interface between the Unikernels
and the hypervisor. Solo5 allows for a minimal code base,
removing code that would otherwise be unnecessary to cloud
computing. This is achieved during compilation by determin-
ing the required dependencies from the imported libraries,
application code and configuration files, further reducing the
Virtual Machine Monitor (VMM) overall attack surface.

Many Unikernel implementations rely solely on their re-
duced attack surface from the previously mentioned features
or lack thereof, not taking into consideration known vul-
nerabilities relating to their existing attack vectors, such as
minimal security features in Address Space Layout Randomi-
sation (ASLR) [17]. This has led to criticism and debate
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Fig. 3: Pivoting Attack

discussing their design; The lack of separation between the
user and kernel-space comes with great security concerns. For
example, a successful buffer overflow attack on the Unikernels
limited functionality could give an attacker a foothold into
kernel space, making privilege escalation unnecessary, as well
as, code execution and pivoting to another target a potential
threat. Furthermore, Figure 3) shows an attacker blocked by
the target’s firewall can leverage a web-application running
on a unikernel to exploit the network. By exploiting the web-
application, the Unikernel API or through compromising the
Unikernel itself, the attack could used kernel functions to forge
malicious packets, for denial of service, or to target other
devices on the network enabling him to pivot [17]. Hence,
while demonstrating potential for scalability and improved
security by reducing their attack surface, some Unikernels are
yet to implement key security features.

A. Immutable Infrastructure
In traditional infrastructure, patches can be applied to up-

grade packages, change the servers configuration and modify
or upload code. This, however, poses the threat of malicious
modifications being made by an attacker. Having an immutable
infrastructure mitigates this by employing the “destroy and
provision” approach of needing to rebuild the Unikernel to
make any changes. This not only prevents malicious mod-
ifications but also reduces the overall code complexity of
having outdated configurations that could lead to new bugs
and vulnerabilities.

a) Para-Virtualisation: In some Unikernel implementa-
tions, para-virtualisation is implemented to restrict privileged
operations to the hypervisor through an API. This essentially
allows applications to run in ring 3 rather than ring 0, isolating
the Unikernels application from the hardware level. Therefore,
the hypervisor is able to enforce Write xor Execute (WˆX) to
its page tables by making executable pages immutable.

b) Heterogeneous Networking: Increased heterogeneity
can be achieved through either enabling multiple instances of
a certain application to run with varying configurations and
libraries or by using a separate Unikernel instance for each
function in a network. For example, this can be implemented
through using a set of Unikernels for hosting databases, each
with their own protections and privileges depending on the
sensitivity and nature of their data, rather than having a singu-
lar database that stores all of this data. Similarly, by allocating

specific Unikernels to run the server, web service, etc. . . , the
network’s architecture can be isolated to its critical functions,
preventing possible knock-on effects of certain attacks, such
as DDoS, from compromising the entire network and allowing
for the affected elements of the network to be isolated and
easily identifiable.

B. Entropy

Unikernels often have a low entropy as the hardware is
virtualised, hence, randomly generated values persist across
reboots, meaning, that if an attacker were to crash a Unikernel,
they may be able to determine ramdomized values even after
rebooting. This lack of entropy can lead to security features
such as ASLR, stack cookies, TCP sequence numbers and
access tokens, etc. . . becoming ineffective [17]. In Rumprun
and MirageOS, this has been effectively mitigated through the
implementation of RDRAND, however, since this is a common
issue among vitalised platforms, this vulnerability requires to
be checked on a platform basis before use [18]. Enforcing
entropy persistence amongst Unikernels may affect incohesive
generated Unikernels by having duplicate values. To mitigate
this, generated seeds should be validated as non-duplicates
otherwise, they may be vulnerable to nonce reuse attacks.

IV. UNIKERNEL WEAK LINKS

A. ASLR Vulnerability

IncludeOS mentions its use of ASLR, however, it has been
demonstrated that their implemention is either flawed or a
bogus claim [17]. In this section we replicate a successful
attack against ASLR and the lattest IncludeOS version. The
ASLR attack is performed against latest stable release of
Ubuntu (18.04.2 LTS) and IncludeOS (v0.15.0). The cloud
Hello World demo from IncludeOS’s GitHub repository was
used as a baseline to host the ASLR testing service. This
service prints the memory addresses of strings, the output of
functions and variables on the stack, as well as, pointers to
newly added blocks of memory onto the heap. To verify the
assertion of ASLR being implemented after each build the tests
were repeated after deleting and then rebuilding the Unikernels
files.
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Fig. 4: ASLR Test Results

B. Results
Figure 4 illustrates the results showing that ASLR was

not implemented in the latest version of IncludeOS, which
is evidenced by the unchanging memory addresses of the
stored values. Furthermore, Rumprun, IncludeOS and Mira-
geOS versions of Unikernels have been tested and confirmed
to not implement ASLR, page protections or stack canaries,
and set their memory to RWX and hence are vulnerable against
multiple attacks.

C. Unikernel Limitations
a) Protection Rings: In traditional operating systems,

protection rings are used to set increasing levels of access
to the operating system. The issue with Unikernels is that
they run their applications in Ring 0 or the “kernel ring”.
Specifically, one of the core ideas behind the structure of a
Unikernel is that the kernel, operating system and application
is contained in a single system [19]. One of the factors of this
is that the Unikernel does not have the capability to provide
additional protection rings, and so must go without.

b) Guard Pages: unmapped pages between memory allo-
cations used to cause segmentation faults are not implemented
on these Unikernels either [17].

c) Debugging Tools: Unikernel deployment is limited
due to the increased difficulty in debugging . This is due to
the removal of components of the operating system; standard
commands for debugging such as netstat, tcpdump and ping
are not present on the Unikernel [20], [21]. Making it difficult
for developer maintaining and updating Unikernels as there is
no easy maner to determine an issue in the code and would
likely be required to perform trial-and-error testing consuming
time and resources. An additional issue is that Unikernels
cannot be updated while running, and require to be shut down,
updated, rebuilt and run again for changes to take effect.

The combination of these factors creates the potential
for the exploitation of a buffer overflow vulnerability to
directly overwrite the instructions of the program. In turn,
this allows for remote code execution, effectively granting the
attacker remote access to the system, which will be met with
administrator privileges due to the lack of protection rings.

D. Mitigations

• Entropy: Enforcing entropy persistence amongst Uniker-
nels may affect groups of frequently generated Unikernels

by sharing duplicate values. To mitigate this generated
seeds should be validated as non duplicates otherwise
they may be vulnerable to nonce reuse attacks.

• Hardening: A method of mitigating the chance of the
Unikernel being compromised is to implement hardening.
Hardening is where efforts are made to restrict what vul-
nerable parts of the system can be accessed by an attacker.
Common techniques for this are consistent patching of
the operating system and application, closing of unused
ports, enforcement of password complexity and removal
of default accounts [22].
1) Host Hardening: Host hardening makes it more diffi-
cult to exploit the applications running on the host. This
can be accomplished through:

– reducing the attack surface
– protecting against stack overflows
– randomising memory layout (ASLR)
– protecting against buffer overflows
– encrypting data wherever possible

Unikernels, at least in theory, provide the ultimate attack
surface reduction. How much the surface is reduced
varies by Unikernel. However, in general, clean slate
Unikernels reduce the attack surface more then legacy
Unikernels do. This is because compiling the application
and the kernel it will run on into a single program
allows the compiler to verify all methods data is passed
around. Interfacing directly within a typesafe, high level
programming language allows clean slate Unikernels a
vastly reduced attack surface compared to passing data
through pipes and C library functions. This reduces the
risk of buffer overflows.
2) Library Hardening: For Unikernels, there are two
very different forms of library hardening: - C standard
library hardening, which affects legacy Unikernels and,
to a lesser degree, clean slate Unikernels, - Native library
hardening, which affects clean slate Unikernels. However,
unlike traditional OS where C is the native language,
a clean slate Unikernel the language the Unikernel was
implemented in is the native.
Unikernels use many different C standard libraries. OSv
uses musl, IncludeOS uses newlib, rumprun uses libc
from NetBSD and UKL uses glibc [23] [17] [24]. NCC
testing has revealed that some, like newlib, lack support
for the FORTIFY SOURCE macro that can be used to
automatically detect some buffer overflows in common
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C functions. The lack of FORTIFY SOURCE forces
developers to manually verify bounds checks in all the
programs. Other parts of the Standard C library, that are
often exploitable and should be hardened include format
specifiers.
Native library hardening depends on both how robust
the Unikernel’s native programming language standard
library is, and how securely are the Unikernel specific
wrappers over external interfaces implemented.
3) Networking: Network hardening usually involves dis-
abling unnecessary services. Unikernels come with few,
if any, making them relatively tricky to crack out of the
box. However, the network services they come with can
be quite vulnerable if left exposed. For example, in OSv
the REST API used to control the Unikernel can replace
the command line, read and write files and directories.
Exposing it to attackers gives them command execution,
Local and Remote File Inclusion.
4) Security Modules and their comparison with Tradi-
tional Linux Host Hardening: There are several potential
security modules that could be installed and implemented
by an administrator. All provided examples making use
of a system for Mandatory Access Controls, where the
OS will control the ability for individual users to grant
or deny access to resource objects on a file system [25]
These are: SELinux (Security-Enhanced Linux), which
provides a system for Mandatory Access Controls and
defines the access and transition rights of all users,
applications, processes and files on the system. [26],
AppArmor, which binds the access control attributes to
the programs instead of the users, which will either report
or outright prevent access from chosen profiles [27]

V. CONCLUSION

Cloud environments are constantly evolving to reduce de-
ployment costs and decrease the complexity of virtualised
solutions. Throughout this paper we presented an overview of
the strength and weaknesses of Unikernels. We demonstrated
that some Unikernels are vulnerable to known attacks such as
buffers overflows and did not yet integrated best practices to
alleviate common vulnerabilities.
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